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By making use of the Noether coupling method and introducing the interaction
of gauge field and fermionic field, we formulate the ISO(3, 1/N) supergravity
Lagrangian and verify its symmetry.

1. GAUGE GROUP AND GAUGE FIELDS

The gauge group of the supergravity considered here is ISO(3, 1/N),
which is constructed from two subgroups [space-time Poincaré group ISO(3,
1) and inner-symmetry group SO(N)] and supersymmetry transformation.

According to the supergravity (Shao, 1981, 1990), let the ISO(3, 1/N)
group generators and respective gauge field and gauge field strengths be

TaB = (Mab’ Pw Ei, }Iiu)
BB = (B, Vi, EL, AD)
RS = (RE(W), Ri(P), RLL(E), RE(H))

where B2, V& are Poincaré gauge fields, A are gravitino fields, and E%, are
Yang-Mills fields. Then we have

w = BﬁBTAB = %BﬁbMab + VﬁPa + ELE, + kAiina (1)
Ry, = RiSTas = REM)M,y + RG(P)P, + RL(E)E; + KR (H)H,,
=D,B, — D,B, (¢))
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where K is a coupling constant whose dimension is —1, and D, = 9, —
ig“BBEr,p is the ISO(3, 1/N) covariant derivative. By making use of the
commutator of 745 (Shao, 1981), and comparing to the coefficient of (2), we
have the gauge field strength components

R{(M) = 8,B + BB — p.ov
RL(P) = 8,V5 + BLVE — nov ~3AuyAu - peov)  (3)
RL(E) = 8,Ei — 8,E, + fi,E}EX

R(H) = A=D), + EX(g)iAle — o v

where B,’L = (5“ — B%(o ).
By introducing the local parameters corresponding to the ISO(3,
1/N) generators

B = (L%, ba, I, 1)
we have the transformation law of gauge field and gauge field strength:
B,—>B,=UBU'+ils,U™!
R, >R, =UR,U

where U = exp(—ie*Bt4p) represents ISO(3, 1/N) group elements. Then the
infinitesimal transformations are

3B, = —ile*B14p, B,} — 9,€"P14p

SR

w = _i[EABTAB’ Ruv} (4)

2. SUPERSYMMETRY AND INNER-SYMMETRY
TRANSFORMATION

Let L** = 0, b* = 0, I' = 0, w** % 0; the transformation is a pure
supersymmetry transformation. Then from (4), we find the transformation
laws of each gauge field under supersymmetry:

SsBﬁb = 0, asVﬁ = i’TTiaAEL('Yg)aB
8sE, =0,  dgAl = jmD!, )
and those of the field strengths:
dsREUM) =0,  JsR{,(P) = im™RE, (H)(¥op (6)
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When L = 0, b* = 0, I' # 0, w'® = 0, in the same way, we have the pure
inner-symmetry transformation laws

8B =0 SEL = —a ' — iftllEX

dVe =0 SIAl = ikli(g; YA )
BREM) =0  §RL(E) = ~ifi /R,(E)
SIRL(P) =0  SRE(H) = ikl(g)iRi(H)

3. THE SYMMETRY OF THE GAUGE FIELD AND MATTER
FIELD LAGRANGIAN

In the supersymmetry theory the physical system includes the fermionic
coordinates ™ in superspace time, which can describe the particle field
(Salam and Stra, 1975). They are anticommutative Majorana spinors

{l’}i"‘, llliB} — 0’ lbia‘ — lllia

and their supersymmetry and inner-symmetry transformations are (Shao,
1981)

B = R,ovrme ®)
S = —il'Egp™ &)

Then we can define the gauge and matter field Lagrangian
Lo = —(REREE + Ui AU (10)

where 4 = y*d, and
RiSRYE = RGM)RE(M) + R, (E)R¥(E) + RE(H)RY(H)
and R{,(P) = 0 in the nontorsion space. Obviously it is an invariant under
space-time and Lorentz transformation.
Now we verify that the Lagrangian is an invariant under the supersymme-
try and inner-symmetry transformations, respectively.
3.1. Supersymmetry Transformation
Taking the supersymmetry transformation of &£,
8s%Lo = Bs(—LRASRYE + Ly AU™)
= —3s[0, BiPREE] — 3T RAT™MF ™ + Ji¥*d, R (11)
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and making use of the following formulas, the Bianchi identity, and the
Euler equation,

oMy = Feyys — ZMTY — YY)
Yot = 3 Mypys — Sy — My

Uy, Y5 Tig = T Y, Ysb™

i . = —7E. io
Yy, Tia i Yull (12)
€9, R,\ = 0
3R =0
we have
Lo = —im9, (D, RE(H)) = w9 ,KY
where K¥%, = —iD,R¥(H) is the superconservation current. Therefore the

action of &, is an invariant of the supersymmetry transformation, that is,

Bsso = J BS‘SEO d4X = J e alLK;; d*X =0 (13)

3.2. Inner-Symmetry Transformation
Taking the inner-symmetry transformation for (10)
31y = —1(RISRYE) + 13/(Pi AU™) (14)
and substituting (9) into (14), we find that its second term is zero; then
81ty = —13(RIERYD)
8ulI'8,REV(E) + if ELRL(E) — iK(g)f AR (H))]
= ['3,K¥

where
K¥ = o, R(E) + zf"E’R "(E) ~ iK(g,)"A’“‘R‘”(H) (15)

is the Yang—Mills conservative current. Therefore &£, is invariant under the
ISO(3, 1/N) gauge group transform.
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4. SUPERGRAVITY LAGRANGIAN

In accordance with the supergravity theory (Freedman ez al., 1976; Deser
and Zumino, 1976) we choose the ERS local supergravity Lagrangian

1 1
Ly, = Tk eR — 3 e rritysy, DIl iy = Loy + Loy (16)
where D}, = ) — B2(0)".
Now we verify that the action of &, is an invariant under the expressions
(5) and (6):

1
dsL1y = d <T6_I_( e*e, VEVIRG(M ))

i
2 €M MAL(YC)ug VIRSH(M) an

OO

1 ,
3o = 1 e M[BsAlysy, RE(H) + Kioysy,RE(H)dsV?

+ A5 v.BsREG(H)] (18)

Substituting (5) into (18), we have for the first term
_i el"")‘pﬁi"‘[?}— —_ Bab(o. )T ,,Riu(H)]
4 T p\Yab YsY Ap
i . . . .
= =7 @Y HRGH) — Ty RGH )0, V3
— TysY,0,RiG(H) — TB(0 ) ysY' RiG(H)]
i _ ) . )
= ~7 €IOT YV RGH)) — Ty VR (H), VY
— TysY, DL RG(H) — T*Bys[0 ., v, IRGH)]

i . . i . . .
=~ O, Ty RIH) ~ ; @RIy AR mioyysRE(H))

1 .
* 16 NPTy sy RG(0) A 19)

where we made use of the nontorsion condition (11), and

[O-ab’ ’YL] = —i2nab‘Yc + iznbc'\/a
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For the second term, using the Fierz transposition formulas and the symmetry

of the Majorana spinor, we have

i . .
~3 ORIV REEH)B VY

I
4

= 7 ARy AR Ty ysRE(H)
For the third term, substituting (5), we have

i . .

T2 ETYsO Y REMDAL

and (18) becomes

1 . )
3 = 2 "y (Tysy,RiS(H))

i — .
— 3 Y AEVSRM)
so the supersymmetry variation of (16) is
i . )
dsFyy = 8s&L(yy + dsFy = 1 €M (T sy, RiG(H))
Then the action of £, is an invariant of supersymmetry:

Ssssg = J Ssgsg d4X =0

5. NOETHER COUPLING CURRENT AND ISO(3, 1/N)
LAGRANGIAN

It is well known that the supersymmetry Noether current is

Bg0 8'580
+ -
At S AE

o] -
J'Ol 8 aquta

where Al and AA, are relative to the supersymmetry transform

SSllJm = ’lTiaAlIJ, SsA';,u = ‘TfiaAAv

AA, — K,

(20)

2D

(22)

Then Ay = R,,0* and AA, = i3, ~ B%(a,)"). Substituting into (22),

we have

(23)
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Coupling the gravitino field with the fermion, we obtain
Pns = KARTY, = LKA, 'R\ 0™
The Yang—Mills Noether current is

3%,

8%o
=AY+ — #
515 Ay AE - Kt

(-
7 39,E,

Substituting (7) and (9) into (24), we find
i— ) . )
It = 5 BB + K@) ASREXH)

so the Yang—Mills Lagrangian is

= —— KE‘ LU B + iK2EL (g )FAPREa(H)

1407

(24)

Then we finally obtain the local gauge-transform-invariant ISO(3, 1/N)

Lagrangian
§£=$0+$sg+$NS+$NT

where
— 1 RA wy 1 - io
20 - 4 p.vRAB + 5 ll’ia ihl"

1
—_1— eR — 5 €’W)‘pAm'Y ‘YvD)\Apux

*e = g

s = %KAﬁ!@a‘Y"Rv)\O"')‘

P = —5 KELPEW® + iK?Ei(g)fNoREV(H)

(25)

Furthermore, we find that the supersymmetry and inner-symmetry

charges of this theory are

He = f 43X J9, = f X Gty Ror0™

E = [d3X Jo = fd3X( i E™ + iK(g)FALRY, (H))
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6. CONCLUSION

The expression (25) leads to more interaction between the fields, particu-
larly that of the fermionic field with the others. The new Noether Lagrangians
$ns and £y introduce interaction between the ferimonic field and gauge
fields. ¥ys mainly introduces fermionic and gravitino fields, including their
three-vertex and four-vertex interactions. ¥y; mainly introduces the three-
vertex interaction between the fermionic and Yang—Mills field, and introduces
three-vertex and four-vertex interactions between gravitino and Yang—Mills
fields, which is different from other gravitational theories. Because there is
a GR Einstein term in £, this Lagrangian can include those four kinds
of interactions.
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